Definitions and key facts for section 5.2

For an $n \times n$ matrix, we call

 $\det(A - \lambda I) = 0$

the characteristic equation of A and $det(A - \lambda I)$ the characteristic polynomial of A.

Fact: For an $n \times n$ matrix A, λ is an eigenvalue of A if and only if

- 1. λ satisfies the characteristic equation;
- 2. equivalently, λ is a *root* of the characteristic polynomial.

The **multiplicity** of λ is its algebraic multiplicity as a root of the characteristic polynomial.

Fact: If A is a triangular matrix, then the diagonal entries of A are the eigenvalues of A repeated to respect multiplicity.