Definitions and key facts for section 5.2

For an $n \times n$ matrix, we call

$$
\operatorname{det}(A-\lambda I)=0
$$

the characteristic equation of A and $\operatorname{det}(A-\lambda I)$ the characteristic polynomial of A.
Fact: For an $n \times n$ matrix A, λ is an eigenvalue of A if and only if

1. λ satisfies the characteristic equation;
2. equivalently, λ is a root of the characteristic polynomial.

The multiplicity of λ is its algebraic multiplicity as a root of the characteristic polynomial.
Fact: If A is a triangular matrix, then the diagonal entries of A are the eigenvalues of A repeated to respect multiplicity.

